Generated Covariates in Nonparametric Estimation: A Short Review
نویسندگان
چکیده
In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context. We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function. JEL Classification: C14, C31
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملNonparametric Regression with Nonparametrically Generated Covariates
In this paper, we analyze the properties of nonparametric estimators of a regression function when some covariates are not directly observed, but have only been estimated by some nonparametric procedure. We provide general results that can be used to establish rates of consistency or asymptotic normality in numerous econometric applications, including nonparametric estimation of simultaneous eq...
متن کاملNonparametric Regression for Dependent Data in the Errors-in-Variables Problem
We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear esti...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملNonparametric estimation of the dependence of a spatial point process on spatial covariates
In the statistical analysis of spatial point patterns, it is often important to investigate whether the point pattern depends on spatial covariates. This paper describes nonparametric (kernel and local likelihood) methods for estimating the effect of spatial covariates on the point process intensity. Variance estimates and confidence intervals are provided in the case of a Poisson point process...
متن کامل